Diabetes Management in the Hospitalized Patient

Claire Baker, M.D.
7/11/2014

Objectives
- Explain how the various medicines for diabetes work.
- Recognize important contraindications to and drug interactions with diabetes medications.
- Describe how other illnesses, diagnoses, and medications can affect diabetes.
- State what patients need to know about their diabetes medications.
- Discuss insulin action profiles and how insulin is dosed.
- Examine current standards of care for diabetes management in the hospital.
- Identify key strategies for successful transition of patients onto their home medication regimen upon discharge from the hospital.

Outline
- Diabetes medicines
 - Insulin
 - Standards of care for diabetes management in the hospital
 - Transitioning patients from the hospital to home

Outline
- Diabetes medicines
 - Insulin
 - Standards of care for diabetes management in the hospital
 - Transitioning patients from the hospital to home

Diabetes Medications
- Insulin
- Sulfonylureas
- Meglitinides
- Metformin
- TZDs
- Cycloset
- DPP-IV Inhibitors
- GLP-1 Analogues
- SGLT2 Inhibitors
- Symlin
- Alpha-glucosidase Inhibitors
- Welchol

Diabetes Medications
- Insulin
- Sensitizers
 - Metformin
 - TZDs
- Secretagogues
 - Sulfonylureas
 - Meglitinides
- GLP-1 Based Therapies
 - DPP-IV Inhibitors
 - GLP-1 Analogues
- Other
 - Amylin analogue
 - Cycloset (bromocriptine)
 - Alpha-glucosidase Inhibitors
 - SGLT2 Inhibitors
 - Welchol (colesevelam)
Diabetes Meds: Sensitizers

- **Biguanide**
 - Metformin (Glucophage, Glumetza, Fortamet)

- **TZDs**
 - Pioglitazone (Actos)
 - Rosiglitazone (Avandia)

Metformin

<table>
<thead>
<tr>
<th>Mechanism</th>
<th>Decreases hepatic glucose production</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depends Upon</td>
<td>Presence of insulin</td>
</tr>
<tr>
<td>Power</td>
<td>Decreases A1C 1 – 2%</td>
</tr>
<tr>
<td>Starting Dose</td>
<td>500 mg daily</td>
</tr>
<tr>
<td>Maximum Dose</td>
<td>2500 mg daily, divided</td>
</tr>
<tr>
<td>Dosing frequency</td>
<td>1 – 3 times daily</td>
</tr>
</tbody>
</table>

Best Candidates

- Nearly all type 2 diabetics

Contraindications

- Elevated creatinine
 - > 1.4 in women, > 1.5 in men
- CHF
- Liver disease
- Alcoholism

Side Effects

- Diarrhea, nausea

Main Risk

- Lactic acidosis

Drug Interactions

- IV contrast, cimetidine

Metformin: Patient Instructions

- Take on a full stomach (after a meal)
- GI symptoms are common initially, and often improve with time and are minimized by titration
- Extended release capsules may appear whole in BMs. The capsules shouldn’t be cut or crushed
- Hold if you have a contrasted radiology study
- Hold during a GI illness

Thiazolidinediones (TZDs)

<table>
<thead>
<tr>
<th>Mechanism</th>
<th>Increase insulin sensitivity in muscle and fat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depends Upon</td>
<td>Presence of insulin and insulin resistance</td>
</tr>
<tr>
<td>Power</td>
<td>Decreases A1C 0.5 – 1.5%</td>
</tr>
<tr>
<td>Starting Dose</td>
<td>Pioglitazone 15 mg, Rosiglitazone 2 mg</td>
</tr>
<tr>
<td>Maximum Dose</td>
<td>Pioglitazone 45 mg, Rosiglitazone 8 mg</td>
</tr>
<tr>
<td>Dosing frequency</td>
<td>1 – 2 times daily</td>
</tr>
</tbody>
</table>

Best Candidates

- Insulin resistance, Obese patients

Contraindications

- CHF classes III and IV
- ALT > 2.5 X ULN

Side Effects

- Edema, weight gain, anemia, fractures

Main Risks

- CHF, possible bladder cancer (pioglitazone), rare hepatotoxicity
TZDs: Patient Instructions

- Mild edema is common. Stop and call prescriber if severe edema
- Stop and call prescriber if shortness of breath, chest tightness, orthopnea
- Can take any time of day, with or without food

Diabetes Meds: Secretagogues

- Sulfonylureas, dosed once or twice daily
 - Glimepiride (Amaryl)
 - Glipizide (Glucotrol)
 - Glyburide (Diabeta, Micronase, part of Glucovance)
- Meglitinides, dosed with meals
 - Repaglinide (Prandin)
 - Nateglinide (Starlix)

Secretagogues

<table>
<thead>
<tr>
<th>Mechanism</th>
<th>Stimulate insulin release</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depends Upon</td>
<td>Presence of functioning beta cells</td>
</tr>
<tr>
<td>Power</td>
<td>Decreases A1C 1 – 2%</td>
</tr>
</tbody>
</table>
| Duration of Effect | Sulfonylureas: 12 – 24+ hours (varies by agent)
 | Meglitinides: 1 – 3 hours |
| Drug Interactions | Repaglinide: Gemfibrozil, Cyclosporine, Clarithromycin, Azoles
 | Nateglinide: Azoles, Cyclosporine |

| Best Candidates | Disease duration < 10 years |
| Contraindications | Renal failure (exception: repaglinide safe)
 | Caution in elderly |
| Side Effects | Hypoglycemia, weight gain |
| Main Risk | Hypoglycemia |

Secretagogues: Patient Instructions

- Educate regarding hypoglycemia: recognition and treatment
- Sulfonylureas: usually taken before breakfast and supper
- Meglitinides: taken before each meal
- Extended release glipizide tablets may appear whole in BMs

GLP-1 Modes of Action in Humans

- Stimulates glucose-dependent insulin secretion
- Suppresses glucagon secretion
- Regulates gastric emptying
- Reduces food intake

GLP-1 is secreted from the L-cells in the intestine

This in turn...
GLP-1 Based Therapies

- **DPP-IV Inhibitors, all once daily pills**
 - Inhibit degradation of GLP-1
 - Januvia (sitagliptin)
 - Onglyza (saxagliptin)
 - Tradjenta (linagliptin)
 - Nesina (alogliptin)
- **GLP-1 Analogues, all injectable**
 - Byetta (exenatide), twice daily, pen
 - Victoza (liraglutide), once daily, pen
 - Bydureon (exenatide), once weekly, vial though pen coming soon

DPP-IV Inhibitors

- **Depends Upon** Functioning beta cells
- **Power** Decrease A1C 0.5 – 0.9%
- **Best Candidates** Mild elevations A1C, patients who want to avoid hypoglycemia and weight gain
- **Contraindications** History of pancreatitis, gastroparesis
- **Side Effects** Headache, nasopharyngitis, pancreatitis??, Possible CHF w/ Onglyza (saxagliptin)
- **Drug Interactions** Tradjenta & Onglyza: avoid use with CYP3A4 inducers

GLP-1 Analogue: Patient Instructions

- Discuss the GI side effects, and that they usually improve with time and are reduced by avoiding overeating
- Byetta: dose 0 – 60 minutes prior to breakfast and supper
- Victoza dosed in the morning with or without food
- Bydureon dosed once weekly, any time of day, with or without food
- Educate on hypoglycemia
- Educate on symptoms of possible pancreatitis

Amylin

Amylin is secreted with insulin
Amylin

Amylin is secreted with insulin

- Suppresses glucagon release
- Increases satiety
- Slows gastric emptying

Amylin Analogue: Symlin (pramlintide)

<table>
<thead>
<tr>
<th>Delivery Method</th>
<th>Injection prior to each meal, pen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best Candidates</td>
<td>Motivated type 1 and 2 diabetics who are on insulin</td>
</tr>
<tr>
<td>Power</td>
<td>Decreases A1C 0.6 – 0.8%</td>
</tr>
<tr>
<td>Side Effects</td>
<td>Nausea, vomiting, hypoglycemia, weight loss</td>
</tr>
<tr>
<td>Contraindications</td>
<td>Hypoglycemia unawareness, gastroparesis</td>
</tr>
</tbody>
</table>

Symlin (pramlintide): Patient Instructions

- Dose prior to meals
- Reduce mealtime insulin 25% upon starting
- Educate regarding hypoglycemia
- Discuss GI side effects and how dose titration helps minimize them and that side effects often abate with time

Cycloset (bromocriptine, quick release)

Mechanism	Increases dopamine, unclear how this lowers blood sugar
Power	Decreases A1C 0.5%
Best Candidates	Uncertain, though proven CV safety
Dosing	Taken upon awakening
Side Effects	Nausea, orthostasis, headache
Drug Interactions	Anti-psychotic drugs, triptans, ergots

Cycloset (bromocriptine): Patient Instructions

- Take with food within 2 hours of awakening
- Start with 1 tablet, and it will be increased weekly to a maximum to 6 tablets daily
- Warn about orthostasis (and possible syncope) and nausea

Alpha-Glucosidase Inhibitors

- Precose (acarbose)
- Glyset (miglitol)
Alpha-glucosidase Inhibitors

Mechanism
Delays carbohydrate absorption

Power
Decreases A1C 0.5 – 0.8%

Dosing
Prior to each meal

Side Effects
Flatulence, diarrhea

Main Risk
Elevated LFTs (with acarbose, rare)

Contraindications
Creatinine > 2

Alpha-glucosidase Inhibitors: Patient Instructions

- Take at start of meals
- Warn about GI side effects, which can be decreased with titration of drug

SGLT2 Inhibitors

- Invokana (canagliflozin)
- Farxiga (dapagliflozin)

Mechanism
Increase renal glucose excretion

Power
Decrease A1C 0.5 – 0.7%

Best Candidates
Unclear (new drug class)

Side Effects
Yeast infections, UTIs, increased urine, weight loss, small decrease systolic BP

Contraindications
CKD (avoid if GFR < 45 Invokana or < 60 Farxiga), Bladder cancer

Main Risk
Renal impairment, hyperkalemia (Invokana), orthostasis

SGLT-2 Inhibitors: Patient Instructions

- Take once daily, with or without food
- Warn of increased urination and to watch for UTI and yeast infection symptoms

Welchol (colesevelam)

Mechanism
Bile acid sequestrant, unknown how it lowers blood glucose

Best Candidate
Pt with elevated cholesterol who can’t tolerate statins

Power
Decreases A1C 0.4 – 0.6%

Side Effects
GI intolerance, increased triglycerides

Contraindications
Triglycerides > 500

Drug Interactions
Many based on absorption: OCPs, thyroid hormone, warfarin, phenytoin, cyclosporine
Welchol: Patient Instructions

- Need to assess their drug list to see when it is safe to take
- Take either once or twice daily, with food
- Discuss GI symptoms: may need to start at a lower dose and titrate up

Diabetes Meds and CKD

- Avoid Use
 - Metformin
 - Sulfonylureas and nateglinide (Starlix)
 - Exenatide (Byetta and Bydureon)
 - SGLT2 Inhibitors
 - Alpha-glucosidase Inhibitors

- Safe (dose adjustment may be necessary)
 - Insulin
 - TZDs
 - DPP-IV Inhibitors
 - Liraglutide (Victoza)
 - Repaglinide (Prandin)
 - Colesvelam (Welchol)
 - Bromocriptine (Cycloset)

Diabetes Meds and Pregnancy and Lactation

- Safe for pregnancy
 - Insulin
 - Glyburide
 - Metformin (likely safe in 2nd and 3rd trimester and may also be safe in 1st trimester)

- Safe for lactation (limited info on many DM drugs)
 - Insulin
 - Glyburide
 - Metformin

Outline

- Diabetes medicines
- Insulin
 - Standards of care for diabetes management in the hospital
 - Transitioning patients from the hospital to home

<table>
<thead>
<tr>
<th>Insulin</th>
<th>Onset</th>
<th>Peak</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rapid Insulins:</td>
<td>5 – 15 Minutes</td>
<td>1 – 2 Hours</td>
<td>2 – 4 Hours</td>
</tr>
<tr>
<td>Lispro (Humalog)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspart (Novolog)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glulisine (Apidra)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glargine (Lantus)</td>
<td>2 Hours</td>
<td>None / Minimal</td>
<td>20 – 24 hours</td>
</tr>
<tr>
<td>Detemir (Levemir)</td>
<td>2 Hours</td>
<td>None / Minimal</td>
<td>16 – 24 hours</td>
</tr>
<tr>
<td>Regular (Novolin or Humulin)</td>
<td>500</td>
<td>30 Minutes</td>
<td>2 – 4 Hours</td>
</tr>
<tr>
<td>Humulin</td>
<td></td>
<td>4 – 10 Hours</td>
<td>12 – 24 Hours</td>
</tr>
<tr>
<td>Regular U-500</td>
<td>30 Minutes</td>
<td>2 – 4 Hours</td>
<td>Up to 24 Hours</td>
</tr>
</tbody>
</table>
Pharmacokinetics of Insulin Products

Premixed Insulins
- With NPH and Regular
 - Novolin 70/30
 - Humulin 70/30
 - Humulin 50/50
 - Relion 70/30
- With NPH and Rapid
 - Novolog 70/30
 - Humalog 75/25
 - Humalog 50/50

Components of an Insulin Regimen
- Basal Insulin (Lantus, Levemir, NPH)
 - Controls glucose between meals and overnight
 - Fairly constant throughout the day
 - About 50% of insulin needs
- Bolus Insulin (Regular or Rapid)
 - Nutritional / Meal Insulin
 - Insulin required to cover meals, IV dextrose, tube feeds, TPN, etc.
 - Correction Insulin
 - Supplemental doses given to correct elevated glucose levels
 - Usually given before meals along with nutritional insulin

Basal Bolus or MDI (Multiple Daily Injection) Insulin Therapy

Mealtime Bolus Insulin
- 7 am bolus
- 110
- 115
- Noon
- BG goal range

Mealtime Bolus Insulin: Correction
- When pre-meal glucose is above goal, a correction is added
- 220
- 120
Mealtime Bolus Insulin: Negative Correction

When pre-meal glucose is below goal, a minus correction is needed

BG goal range
65
7 am bolus minus 1 unit
noon
90

Correction Insulin or Sliding Scale
- Often overused and adjustments to doses never made
- Use it pre-meal to account for both hyperglycemia and hypoglycemia
- Sliding scale at bedtime
 - Can cause nocturnal hypoglycemia
 - Often not done unless bedtime sugar very high (300s or more) or during illness
- Do not supplement w/ long acting insulin: use regular or rapid-acting only

Individualizing the Sliding Scale
- Takes into account individual patient’s sensitivity to insulin
- Patients may know this from experience
 - To estimate: divide 1700 / TDD
 - TDD: total daily dose of insulin (basal plus bolus)
 - Example: TDD is 50 units
 - 1700 / 50 = 34 mg/dL glucose
 - A 1 unit bolus will decrease glucose by 34 mg/dL
 - For simplicity, round to 30
 - For every 30 points above 150, the patient will give 1 extra unit of insulin.

Nutritional Insulin: Carbohydrate Ratios
- Attempts to match mealtime insulin dose to amount of food eaten
 - Imperfect
 - Patients either need a set amount of carb per meal with a set mealtime dose or they need to calculate dose based on carb content of meal
 - Mealtime carbs are divided by carb ratio to arrive at dose
 - Example: Patient takes 1 unit per 8 grams of carb
 - Meal contains 70 grams of carb
 - 70 / 8 = 8.75. Round up to 9 units.
 - Caution: some patients use units of insulin per carb choice
 - 1 carb choice = 15 grams carbohydrate
 - Example: 2 units of insulin per carb choice

Mealtime Example: Combining Nutritional with Correction Insulin
- Patient with a 1:10 insulin ratio is going to eat 60 grams of carbohydrate
- 1:30 mg/dL correction factor
- Pre-meal glucose is 192
- To cover food: 60 grams / 10 = 6 units
- To cover glucose: 192 – 120 (goal glucose) = 72
 - 72 / 30 (correction factor) = 2.4 units
- Total 6 + 2.4 = 8.4 units
 - Round to either 8 or 9 units
Mealtime Example: With Sliding Scale

- Patient with a 1:10 insulin ratio is going to eat 60 grams of carbohydrate
- On standard dose sliding scale
- Pre-meal glucose is 192
- To cover food: 60 grams / 10 = 6 units
- Standard sliding scale: 2 units needed for glucose of 192
- Total mealtime dose: 6 + 2 = 8 units

Avoiding Sliding Scale Problems

- Insulin sensitive patients (type 1 diabetics, thin, elderly, renal failure) need “light” sliding scales
- Fragile patients (elderly, mental status changes, “brittle” diabetics) need sliding scales that start at higher glucoses (e.g. start at 200 rather than 150)
- If sliding scale is not decreasing glucoses to goal, consider if a steeper sliding scale is needed or if scheduled insulin doses are inadequate

Outline

- Diabetes medicines
- Insulin
- Standards of care for diabetes management in the hospital
- Transitioning patients from the hospital to home

AACE/ADA Recommended Target Glucose Levels in ICU Patients

- Starting threshold of no higher than 180 mg/dL
- Once IV insulin is started, the glucose level should be maintained between 140 and 180 mg/dL
- Lower glucose targets (110-140 mg/dL) may be appropriate in selected patients
- Targets <110 mg/dL or >180 mg/dL are not recommended

AACE/ADA Target Glucose Levels in Non–ICU Patients

- Premeal glucose target <140 mg/dL
- Random BG <180 mg/dL
- To avoid hypoglycemia, reassess insulin regimen if BG levels fall below 100 mg/dL
- Occasional patients may be maintained with a glucose range below or above these cut-points

Glucose Targets: Non-Critical Care

- More stringent targets may be appropriate in stable patients with previous tight glycemic control
- Less stringent targets are appropriate for terminally ill or those with severe co-morbidities
Glycemic Management Strategies in Noncritically Ill Patients
- Insulin therapy preferred regardless of type of diabetes
 - Discontinue noninsulin agents at hospital admission of most patients with type 2 diabetes with acute illness
 - Use scheduled SC insulin with basal, nutritional, and correction components
 - Modify insulin dose in patients treated with insulin before admission to reduce risk for hypoglycemia and hyperglycemia
 - Avoid prolonged therapy with sliding scale insulin alone
 - Continuous IV insulin in selected patients

Concerns with Non-insulin Diabetes Therapies in the Hospital
- Time-action profiles of oral agents can result in delayed achievement of target glucose ranges in hospitalized patients
- Sulfonylureas are a major cause of prolonged hypoglycemia
- Metformin is contraindicated in patients with decreased renal function, use of iodinated contrast dye, and any state associated with poor tissue perfusion (CHF, sepsis)
- Thiazolidinediones are associated with edema and CHF
- α-Glucosidase inhibitors are weak glucose-lowering agents
- Pramlintide and GLP-1 receptor agonists can cause nausea and exert a greater effect on postprandial glucose

Insulin Therapy in Patients With Type 2 Diabetes
- Discontinue noninsulin agents on admission
- Insulin naïve: starting total daily dose (TDD):
 - 0.3 U/kg to 0.5 U/kg
 - Lower doses in the elderly and patients with renal insufficiency
- Previous insulin therapy: reduce outpatient insulin dose by 20%-25%
- Half of TDD as basal insulin given at the same time of day and half as rapid-acting insulin in 3 equally divided doses (AC)

Point of Care Glucose Testing and Insulin Administration
- Proper timing of glucose testing and insulin administration can reduce the risk of hypoglycemia and hyperglycemia
- Administer regular insulin 30 min before meals
- Administer rapid-acting insulin up to 15 min before meals
 - Can be given immediately after meal
 - Recommended schedules for POC testing
 - Before meals and at bedtime in patients who are eating
 - Every 4-6 h in patients who are NPO or receiving continuous enteral feeding

Medical Nutrition Therapy (MNT)
- MNT is an essential component of the glycemic management program for all hospitalized patients with diabetes and hyperglycemia
- Providing meals with a consistent amount of carbohydrate can be useful in coordinating doses of rapid-acting insulin to carbohydrate ingestion

Factors Affecting Blood Glucose Levels in the Hospital Setting
- Increased counter-regulatory hormones
- Changing IV glucose rates
- TPN and enteral feedings
- Lack of physical activity
- Unusual timing of insulin injections
- Use of glucocorticoids
- Unpredictable or inconsistent food intake
- Fear of hypoglycemia
- Cultural acceptance of hyperglycemia
Glucose Control Deteriorates During Hospitalization

Hyperglycemic Influences
- Stress hyperglycemia
- Concomitant therapy (e.g., steroids)
- Decreased physical activity
- Medication omissions
- Medication errors
- Fear of hypoglycemia
- IV dextrose
- TPN
- Enteral feeds

Hypoglycemic Influences
- Decreased caloric intake
- Gastrointestinal illness
- Enforced compliance with diet and meds
- Medication errors
- Altered cognition

Importance of Nursing Care for Improving Glycemic Control

- 24-hour coverage by nursing
- Nurses are accepted as and expected to be patient advocates
- Nursing often coordinates, and is aware of, the multiple services required by patient
 - Travel off unit, (e.g., physical therapy, X-ray)
 - Amount of food eaten (carbohydrates)
 - Patient’s day-to-day concerns
 - Order changes (by various providers)

NPO Patients

- Ideally, patients should have procedures early in the morning to avoid a prolonged NPO period
- NPO patients need regular blood glucose monitoring (every 4-6 hours) and may need IV dextrose
- NPO patients on oral diabetic medications with long duration are at risk for hypoglycemia
- Advocate for early test procedures so patients do not miss too many meals

NPO Patients

- Management differs for type 1 and type 2
 - Type 1 patients always need basal insulin
 - Typical insulin adjustment for NPO status
 - Type 2s: reduce basal insulin dose by 50%, hold mealtime insulin, continue the correction dose
 - Type 1s: reduce basal insulin dose by 25%, hold mealtime insulin, continue the correction dose
- Monitor BG every 4 – 6 hours and give corrective insulin as needed
- Resume the previous regimen once the patient is eating again

Tube Feedings

- Patients on tube feedings will usually receive a continuous flow of carbohydrates via their feeding
- Blood glucose monitoring (usually every 4 or 6 hours) and scheduled dose of insulin plus corrections are needed
- Interruption of feeding can cause hypoglycemia
 - IV dextrose may be needed while the feeding is off
 - Notify physician for IV dextrose and adjustment of insulin orders when there is interruption or change in feeding rate

Total Parenteral Nutrition (TPN)

- Patients on total parenteral nutrition (TPN) may have insulin in the TPN or may be on SC insulin
- Blood glucose monitoring every 4-6 hours is needed
- Interruption of TPN can cause hypoglycemia
 - Initiation of IV dextrose may be needed
 - Notify physician for IV dextrose and adjustment of insulin orders when there is interruption or change in TPN
Impact of Medications on Blood Glucose Levels

- Medications used for the treatment of comorbid conditions can cause hyperglycemia
- Corticosteroids increase glucose production by the liver and increase insulin resistance
 - Reduction or discontinuation of the steroid can cause hypoglycemia
 - Notify physician for adjustment of insulin orders when there is a change in steroid dose

Concomitant Medications

Hyperglycemic Influences
- Corticosteroids
- Vasopressors
- Beta blockers
- Thiazide diuretics
- Atypical anti-psychotics (olanzapine, clozapine)
- Calcineurin inhibitors (cyclosporine, sirolimus, tacrolimus)
- Protease inhibitors

Hypoglycemic Influences
- Insulin and other diabetes meds
- Fluoroquinolones (rare)
- Ethanol
- Beta blockers
- Salicylates

Striking the Right Balance

Hyperglycemia

Hypoglycemia

Signs and Symptoms of Hypoglycemia

- Tachycardia
- Hunger
- Restlessness
- Weakness/fatigue
- Diaphoresis
- Pallor
- Shakiness

- Irritability
- Anxiousness
- Light-headedness
- Change in mental status (e.g., confusion)
- Impaired vision or dilated pupils
- Headache

Hypoglycemia: Areas of Risk

- Changes in carbohydrate or food intake (e.g., vomiting or new NPO status)
- Changes in clinical status or medications
- Interruption of IVF, TPN, or tube feeds
- Failure to adjust therapy based on BG patterns
- Prolonged use of sliding scale as monotherapy
- Poor coordination of POC testing with insulin administration and meal delivery
- Poor communication during patient transfers
- Transportation off ward causing meal delays
- Errors in order writing and transcription

Patient-Specific Factors Increasing Risk of Inpatient Hypoglycemia

- Advanced age
- Decreased oral intake
- Chronic renal failure
- Liver disease
- Concurrent illness (CVA, shock, sepsis)
- Altered mentation or dementia
- Ventilator use
- Concurrent meds

Nurse-Initiated Strategies for Treating Hypoglycemia

- **Blood Glucose <70 mg/dL**
 - Alert and able to eat and drink
 - Alert and awake patient who is NPO or unable to swallow
 - Patient with an altered level of consciousness

- **Administer 15–20 g of rapid-acting carbohydrate**
- **Administer 20 mL dextrose 50% solution IV and start IV dextrose 5% in water at 100 mL/h**
- **IV access: administer 25 mL dextrose 50% (1/2 amp) and start IV dextrose 5% in water at 100 mL/h**
- **No IV access: give glucagon 1 mg IM Limit, two times**

- Recheck BG and repeat treatment every 15 min until glucose level is at least 80

15 Grams of Carbohydrate Raises Blood Glucose by 30-50 mg/dL

- 1 tube oral glucose gel
- 3 – 4 glucose tablets
- ½ cup juice
- 1 tablespoon honey, sugar, or jelly
- 8 ounces milk
- ½ can of pop

Outline

- Diabetes medicines
- Insulin
- Standards of care for diabetes management in the hospital
- Transitioning patients from the hospital to home

Relationship Between Inpatient and Outpatient Diabetes Management

Care received in the outpatient setting can affect need for hospitalization

Outpatient
- Compliance with glycemic goals depends on the patient

Inpatient
- Compliance with glycemic goals depends on physicians, nursing, and hospital staff

Lessons learned in the hospital can impact patient self-care behavior at home

Functional Health Literacy and Understanding of Medications at Discharge

172 patients discharged from community-based teaching hospital with prescriptions for 1 or more new medications

- Recalled being told of ANY possible adverse effects: 11%
- Could name 21 possible adverse effects: 22%
- Knew dose: 76%
- Knew medication purpose: 64%
- Knew medication name: 64%
- Knew dosing schedule: 68%
- Aware that new medications had been prescribed: 86%

Addressing Health Literacy

- Use graphics/pictures
- Use variety of media
- Use teach back method to assess understanding
- Focus education materials on patient action and motivation
- Check for patient understanding
- Implement follow-up phone calls to reinforce instructions

Health Numeracy

- Difficulty adding and subtracting
- Effects in diabetes
 - Carbohydrate counting
 - Adding correction insulin to nutritional insulin
 - Recommended example:
 - If your blood sugar is 80 to 150, take 10 units ___ insulin
 - If your blood sugar is 151 to 200, take 12 units ___ insulin
 - If your blood sugar is 201 to 250, take 15 units ___ insulin

Preadmission Factors to Be Considered in Discharge Planning

- Physical/self-care limitations: blindness, stroke, amputation, dexterity
- Socioeconomic factors: insurance coverage, family support, cost of medicine and insulin
- Access to follow-up care: PCP, other HCPs
- Degree of glycemic control prior to admission and severity of hyperglycemia
- Learning issues: language, cognition, competence related to diabetes self-management

Survival Skills to Be Taught Before Discharge

- How and when to take medication/insulin
 - Side effects of medication
- How/when to test blood glucose (SMBG)
 - Target glucose levels
- Meal planning basics
- How to recognize and treat hypoglycemia
- Sick-day management plan
- Date/time of follow-up visits
 - Including diabetes education
- When and whom to call on the healthcare team
 - Available community resources

Recommended Educational Strategies for Inpatients Prior to and at Discharge

- Begin education on day 1 or as soon as the patient is able to participate
- Initiate inpatient diabetes educator consult as early as possible
- Nursing to reinforce the education as many times as possible utilizing every opportunity (medications, BG result, diet, etc.)
- Involve family members whenever appropriate
- Provide education materials to reinforce teachings and provide community and Web resource lists
- Continue education on an outpatient basis if needed by referring through appropriate channels

Discharging Patients With Previously Diagnosed Diabetes

- Resume preadmission diabetes regimen at time of discharge for patients with acceptable preadmission glycemic control and no contraindications to prior therapy
 - HgA1C at time of admission helps determine level of preadmission diabetes control
- Modify preadmission therapy for patients identified as being in poor control or with new contraindications
- Provide patient and family members/caregivers with written and oral instructions regarding glycemic management regimen at time of hospital discharge

Discharging Patients New to Insulin

- Refer to an outpatient diabetes education program shortly after discharge to discuss ongoing diabetes control
- Provide discharge information
 - When to check BG
 - Timing of insulin administration
 - When to call PCP (e.g., symptoms of hypoglycemia)
- Communicate with patient’s PCP
 - Changes made to patient’s treatment regimen during hospitalization
- Complete medication list
- Assess need for home health care
Predischarge Checklist for Diabetics

- Diet information
- Monitor/strip and prescription
- Prescription for/supplies of medications, insulin, needles
- Treatment goals
- Contact phone numbers
- Medi-alert bracelet
- Survival skills training

Objectives: Review

- We reviewed how the various diabetes medicines work
- We reviewed contra-indications to and drug interactions with diabetes medications
- We reviewed how other illnesses, diagnoses, and medications can affect diabetes
- We reviewed what patients need to know about their diabetes medications
- We discussed insulin action profiles and how insulin is dosed
- We reviewed current standards of care for diabetes management in the hospital
- We identified strategies for successful transition of patients onto their home medication regimen upon discharge from the hospital

Questions?