Fetal Intervention Update 2017

Anthony Johnson, D.O. Professor of Obstetrics and Gynecology Professor of Pediatric Surgery University of Texas School of Medicine at Houston McGovern Medical School Co-Director, The Fetal Center Children's Memorial Hermann Hospital

Disclosures

Receive royalty payments for authorship of the chapters on twin twin transfusion syndrome in UpToDate®

Definition of Maternal-Fetal Surgery

- Operating on two patients simultaneously where both incur risks
- Benefits to mother probably not medically definable
- Opportunity to correct a surgically-treatable lesion or diminish its sequelae

Objectives

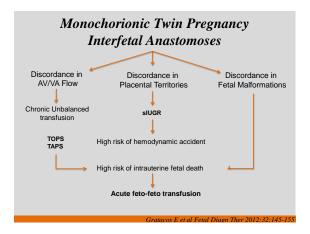
- Review current clinical procedures and potential future maternal fetal interventions
 - Twin twin transfusion (TTTS)
 - · Fetal myelomeningocele (fMMC)
 - Fetal diaphragm hernia ~ FETO

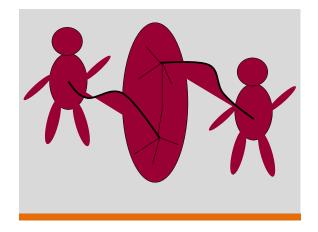
30% MC affected

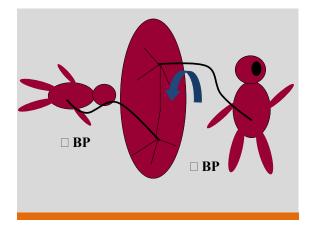
Discordant Anomalies TAPS

Outcome of MCDA twin gestations in the era of invasive fetal therapy

Twin live births	172	85%	
Singleton	15	7%	
Double demise	15	7%	
Complication			
TTTS	18	9%	
sIUGR	30	15%	
Losses			
Total	11% (TTTS ~ 42%)		
< 24 weeks	84%		
> 24 weeks	16%		
Hidden Mortality of xtra loss in MC twins is due to comp	~	ntal anastom	


1


Diagnosis


"There is **NO** diagnosis of twins.

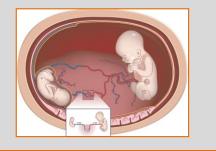
The only diagnosis is a monochorionic or dichorionic twin gestation.

This should be written in capital <u>red</u> letters on the front of the chart at 8 - 10 weeks".

Acute Twin Twin Transfusion Monochorionic Multifetal

Perimortem TTTS

- · Transfusion from surviving twin into dead fetus
- 18-34% brain injury
- 15% co-twin demise
- Optimal treatment not known


Acute Perinatal TTTS ~ Intrapartum

- 2-5%
 - Acute shifts in blood pressure differences
 - Discordant hemoglobin values > 5g/dL
 - Treatment
 - Donor ~ O2 and volume expansion ~ transfuse w/ RBC
 - Recipient ~ partial exchange transfuion

Chronic Twin-Twin Transfusion Syndrome

_ . .

Twin Oligohydramnios Polyhydramnios Syndrome TOPS Twin Twin Transfusion Syndrome "the common denominator"

Monochorionic Twins Pathophysiology of TTTS

Net transfer of blood or other vasoactive substance from one fetus (donor) to the other (recipient) via placental vascular communications

Arterio-arterial

Veno-venous

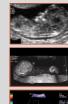
Arterio-venous

Deep, unidirectional flow

Pathophysiologic evidence is indirect

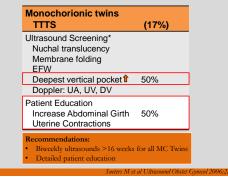
Twin Twin Transfusion Syndrome Diagnosis

- Single placenta
- · Discordant amniotic fluid volumes
 - Polyhydramnios (MVP > 8cm) [< 20 wks; > 10 cm ≥ 20 wks]
 - Oligohydramnios (MVP >2cm)
- · Concordant for sex


Prediction of Twin Twin Transfusion

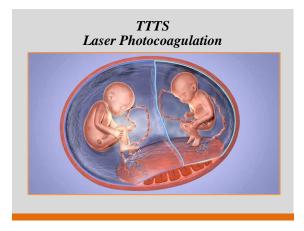
Nuchal Translucency

Folding Intertwin Membrane


Arterio-arterial anastomoses

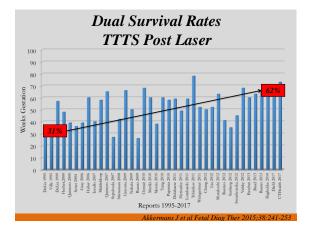
Velamentous Cord Insertion

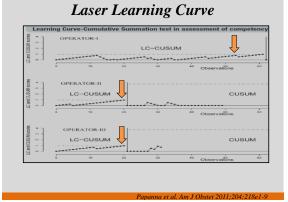
Timely Diagnosis of TTTS by Biweekly 2nd Trimester Sonography and Patient Education



Twin-Twin Transfusion Syndrome Staging

Stage I	Oligohydramnios(<2cm) with Polyhydramnios(>8cm)
Stage II	Discordant fluid volume No bladder in the donor twin
Stage III	Doppler flow- absent or reversed in umbilical artery or ductus venosus, pulsatile flow in the umbilical vein
Stage IV	Hydrops in one or both fetuses
Stage V	One or both fetuses have died

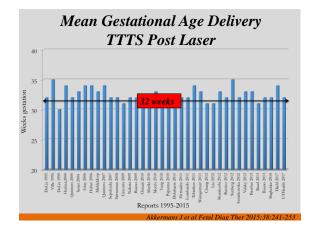

Treatment for TTTS

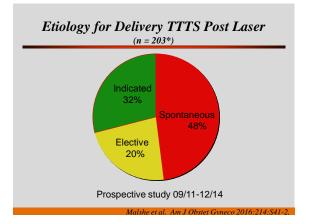

- Serial Amnioreduction
- Amnioreduction w/ Septostomy
- Selective reduction of umbilical cord occlusion
- Fetoscopic laser ablation of placental anastomoses
 - Gestational age limits [16-26 wks]
 - Contraindications
 - Short Cervix ~ center specific
 - PROM
 - · Chorioamnion Separation
 - Hemorrhage/Hematoma

Intervention for the treatment of TTTS Laser vs. Amnioreduction

Outcome	Relative Risk (95% Cl)
Dual Death	0.33 (0.16-0.67)
Overall Death	0.71 (0.55-0.92)
Less Perinatal Death	0.59 (0.40-0.87)
Neonatal Death	0.29 (0.14-0.61)
Neurologically intact at 6 months	1.66 (1.17-2.35)
	The Cochrane Collaboration

The Fetal Center 30-day Survival Rate ~ Procedure GA (09/11-08/17)


Gest Age Procedure	TOTAL	Twins	Singleton	None
16-18 weeks	89	65%	20%	15%
19-21 weeks	132	77%	8%	15%
22-24 weeks	75	75%	14%	11%
25-27 weeks	27	70%	30%	
Summary	323	72%	15%	13%


Preoperative predictors of IUFD after laser photocoagulation for TTTS

Study	Variable	IUFD	Р
Zikulnig L 1999	Amnioreduction Intertwin discordant AC A/R a-wave DV	Both Donor Recip	0.038 0.004
Martinez J, 2003	AREDF UA R A-wave DV	Donor Donor	0.001 0.007
Skupski D 2010	↓ EFW REDF UA R A-wave DV Hydrops	Donor Donor Recip Recip	0.002 0.004 0.007 0.04
Eixarch, E 2013	MCA PSV > 1.5 MOM REDF UA Fetal EFW > 30% GA_Procedure < 22 wks	Recip Donor Donor Donor	0.016 0.033 0.036 0.046

The Fetal Center 30-day Survival Rate ~ TTTS Stage (09/11-08/17)

TTTS Stage	TOTAL	Twins	Singleton	None
I	43	84%	11%	5%
П	96	76%	9%	15%
III	166	68%	18%	14%
IV	15	67%	26%	7%

Risk Factors Associated with Preterm Delivery after Laser ablation in TTTS (29-33wks)

Variable	Hazard ratio (9% CI)	Р
History of prematurity	1.70 (1.11-2.91)	0.015
iPPROM	2.42 (1.93-3.03)	<0.0001
Cervical Length	0.98 (0.98-0.007)	0.004
Amnioinfusion	1.50 (1.20-1.90)	<0.0001
Cannula diameter 12 Fr	1.33 (1.01-1.74)	0.04

Papanna R et al Ultrasound Obstet Gynecol 2014;43:48-53

The Fetal Center 30-day Survival Rate ~ Cervical Length (09/11-08/17)

Cervical Length	TOTAL	Twins	Singleton	None
<u>></u> 1.5 cm	306	874%	15%	11%
< 1.5 cm	16	44%	12%	44%

TTTS Neurologic Outcome

Author	N	Percent follow-up	Age @ follow-up	Major abnormal
Salomon, 2009	73	96%	60 mo	16%
Lopriore, 2017	278	94%	48 mo	CP ~ 5% NDI ~ 6%
Rossi, 2011	895	97%	Birth	6%
	1255	97%	6-48 mo	11%

Twin Anemia-Polycythemia Sequence (TAPS)

Post-laser

13%

2%

8% Spontaneous

5%

5%

- Larger intertwin hemoglobin difference w/o signs of TOPS
- · Intertwin blood transfusion w/o hormonal imbalance
- Post laser: ex-recipient anemic w/ ex-donor polycythemic
- · Spontaneous reported as early as 16 weeks Ν

101

152

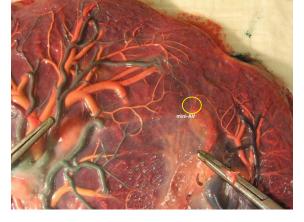
276

202

113

Study

Robyr, 2006


Habli, 2009

Slagehekke,2010

Lewi et al, 2009

Lopriore, 2010

TAPS: Classificatio

n
s Doppler Examination

Antenatal	Finding as Doppler Examination
Stage 1	MAC-PSV: Donor > 1.5 & Recipient < 1.0 MOM
Stage 2	MCA-PSV: Donor > 1.7 & Recipient < 0.8 MOM
Stage 3	Stage 1 or 2, with Cardiac compromise in donor
Stage 4	Donor hydrops
Stage 5	IUFD of one or both
MCA PSV sho	ould be included in screening all MC Multifetal pregnancies

Fetoscopic laser coagulation of the vascular equator versus selective coagulation for TTTS An open-label RCT

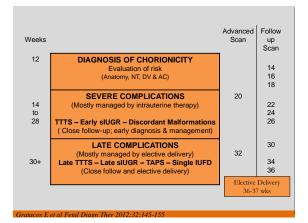
Placenta that was treated using the standard technique

Placenta that was treated using the Solomon technique

Solomon Trial RCT

Laser Vascular Equator vs. Selective Coagulation

Outome	Solomon Group (234 fetuses)	Standard Laser (270 fetuses)	CI
Primary	34%	49%	0.54 (0.35-0.82)
Overall Survival	74%	73%	NS
ALOS	85%	87%	NS
Dual Survival	64%	605	NS
TAPS	3%	16%	0.16 (0'05-0.49)
Recurrent TTTS	1%	7%	0.21 (0.04-0.98)
Neuro Morbidity	8%	13%	NS


Slaghekke F et al Lancet 2014

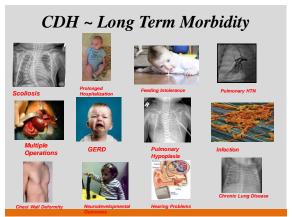
Vascular Occlusion Injuries in TTTS

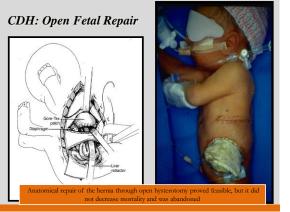
- 95% recipient
- 85% lower limb
- 71% right sided
- Intestinal atresia
- Mechanism
 - Polycythemia
 - Hyperviscosity
 - Hypertension
 - Vascoconstriction

Algorithm for Differential Diagnosis in MC Twins AF MVP >8 cm (>10 cm) / < 2 cm \rightarrow Yes \rightarrow TTTS Bladder very large / very small-non visible NO EFW < 10th % tile (+/- >20-25%) \rightarrow Yes \rightarrow slUGR NO MCA PSV > 1.5 & 0.8 MOM \rightarrow Yes \rightarrow TAPS NO \leftarrow AF Discordance \leftarrow EFW Discordance

Conclusion Treatment & Management of TTTS

- Expectant Management ~ PMMR 80-90%
- Placental laser photocoagulation
 - Only proven therapy to reverse cardiovascular programming
 - · SOC: Stage II-IV at 16-26 weeks
 - Role <16 and >26 weeks preliminary reports promise
 - Stage 1 ?
 - · Not a panacea
 - Survival: Dual intact ~ 60-70% with ALOS ~80-90%
 - · Donors 60% vs. Recipient 70% [discordance EFW]
 - Developmental impairment 11-16% (cerebral palsy 5%)


Diaphragmatic Hernia


Diaphragm Hernia

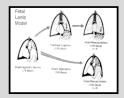
- 1- 4/10,000 live births
- Neonate
 - · Defect requiring surgical repair
 - Pulmonary hypoplasia Respiratory insufficiencyPulmonary hypertension
- 2nd tri diagnosis SR > 60%
 - · Tertiary referral

 - Advanced imaging
 Genetic testing
 Multidisciplinary management

Fetal Lamb Tracheal Ligation & CDH **Reversal of Structural & Physiologic Effects**

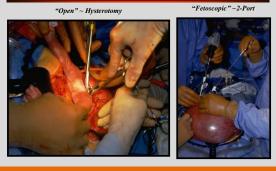
Purpose: Can lung growth be accelerated in the setting of experimental pulmonary hypoplasia.

Method: 95 day gestation fetal sheep were divided into four groups: nephrectomy (NP), NP/TL, TL alone, and sham-operated control animals.


Results: NP smaller lungs than control, NP/TL larger lungs when compared with NP and the controls

Concluded:

(1)TL accelerated lung growth beyond normal limits even in the absence of fetal kidneys; (2)Lung growth is achieved in part by cell proliferation;


(3)Lung architecture remains relatively normal (4)Pulmonary hypoplasia associated with CDH may be preventable by tracheal occlusion

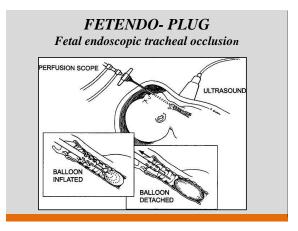
Wilson JM J Pediatr Surg 1993;28:1433

Proposed Tracheal Occlusion For treatment of CDH Section of Surgery Annual meeting 1992 AAP

Fetal Tracheal Clip Application Laparotomy

Sonographic Predictors of Survival in Fetal Diaphragmatic Hernia

Survival	LHR
0%	< 0.6
57%	> 0.6 - <u><</u> 1.35
100%	> 1.35
	0% 57%

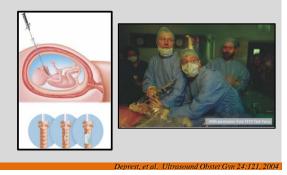

·Postnatal survival directly related to LHR ·Large difference in reported results •Measured at different gestational ages •Method of measuring LHR

Sonographic Predictors of Survival in Fetal Diaphragmatic Hernia

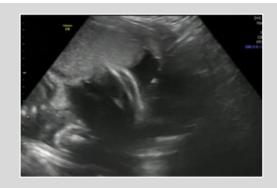
ults ional ages

1996;31:14

ternum	Stomach				
-	-	Ν	Survival	LHR	
		5	0%	< 0.6	
- and		28	57%	> 0.6 - <u><</u> 1.35	
		5	100%	> 1.35	
ound	Spine Aorta	•Large •N	e difference in leasured at dif	irectly related to LH reported results ferent gestational a	
IR O/E	TFLV O/E	•N	lethod of meas	suring LHR	
t	LITV				
ach	Stomach				
r Index					
ltrasound	l Obstet Gynecol.2	2007;30:72	e6 Metkus A	P J Pediatr Surg 1996;	31.

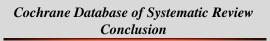

Diaphragmatic Hernia NIH Randomized Trial

Standard Treatment	Tracheal Occlusion	Р
11	13	
23%	100%	< 0.001
31%	73%	0.10
8%	27%	0.30
37.0 + 1.5	30.8 + 2.0	< 0.001
77%	73%	1.0
n		
	Treatment 11 23% 31% 8% 37.0 + 1.5	Treatment Occlusion 11 13 23% 100% 31% 73% 8% 27% 37.0 + 1.5 30.8 + 2.0 77% 73%

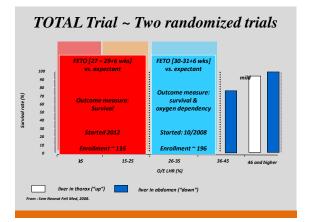

Antenatal Left Sided Diaphragm Hernia Survival Rates LHR O/E and Liver Position

o/e LHR Liver N Survival <25% Up 39 15% Down 10 30% 25*34% Up 65 55% Down 44 66% 35*44% Up 27 66% Down 47 77% >45% Up 16 100% Down 67 87% 75%				Eu	ofetus
Down 10 30% 25-34% Up 65 55% Down 44 66% 35-44% Up 27 66% VCSF Down 47 77% >45% Up 16 100% Down 67 87% TOTAL Up 161 55%		o/e LHR	Liver	N	Survival
Down 44 66% 35-44% Up 27 66% Down 47 77% >45% Up 16 100% Down 67 87% TOTAL Up 161 55%		<25%	•		
Down 47 77% >45% Up 16 100% Down 67 87% TOTAL Up 161 55%		25-34%			
Down 47 77% >45% Up 16 100% Down 67 87% TOTAL Up 161 55%	UCSE	35-44%	Up		
Down 67 87% TOTAL Up 161 55%	CCSF		Down	47	77%
		>45%			
		TOTAL			

European Consortium Fetoscopic Tracheal Occlusion (FETO)



Isolated Left Side DH ~ 29 4/7 weeks


Left Sided CL Predictor of Pa		
•	LHR	
Variable	Ν	Surviva
Total	144	54%
o/e LHR (%)		
< 15	15	20%
16-20	53	59%
21-25	56	54%
26-30	20	70%
FETO ir Associated with a substa	n Severe CDI intial improv	
		Iani I et al Ultr

•The current evidence is too limited by small numbers of pregnancies and variable methodological quality of the trials to date to recommend intervention (FETO) in pregnancy for women and their unborn babies with CDH.

Harrison, MR, NEJM 2003 24 Ruano R, UOG, 2012 41	RCT Study	N
Ruano R, UOG, 2012 41	Harrison, MR, NEJM 2003	24
	Ruano R, UOG, 2012	41

Prenatal intervention, fetoscopic tracheal occlusion will have a 50% increase of the expected survival rate in fetuses with isolated CDH and severe pulmonary hypoplasia

TOTAL Trial

Exclusion

•Hx preterm labour

airway occlusion

•Cervix length <15 mm

intervention

fetoscopy

•Maternal contraindication to fetal

•Technical or maternal limitation to

•Refusal to remain in proximity to

FETO center during time period of

Inclusion

•Singleton fetus •Isolated left-sided CDH •Normal Karyotype •Severe Group

- O/E LHR <25 %
 Irrespective of liver position
- •Moderate Group
- O/E LHR 25-34.9%, liver up or down
 - O/E LHR 35-44% liver up

Postnatal Treatment Expectant management during pregnancy postnatal repair. Standardized neonatal intensive care

Total Trial FETO Participating Center Requirments

FETO Center

- Fetoscopic Program ~ 36/year
- Postnatal CDH Program ~ 7/year

Local PI

- Profiency
 - · Participating in 15 cases
 - 5 cases performed locally ~ Feasibility Studies

BALT Occlusive Device

TOTAL Team Training Simulation and Animal

FETO Simulation Model

Pilot Trial of FETO in Left CDH Feasibility Study

Study Type: Interventional Study Design:

Endpoint: Safety/Efficacy Study
 Interventional Model: Single group
 assignment
 Masking: Open Label
 Primary Purpose: Treatment

Primary Outcomes

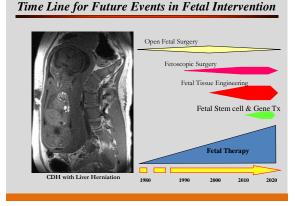
•Successful placement & removal of BALT Goldbal2 balloon •Gestational age of delivery

Secondary Outcomes •Lung Volume & LHR after FETO •Survival 6 month

Ultimate goal to enter TOTAL Trial

TOTAL TRIAL ~LIMITATIONS

- · Backdoors ~ Balloons placed outside the trial
- European ~ Lack of Equipoise
- · Pessimistic: survival rate with expectant management
- Optimistic: suggest outcomes better with FETO


TOTAL Trial & CDH

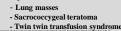
- CDH is a rare disorder
- Concentrating treatment in high volume regional centers with expertise ~ common sense
- · Experience is related to efficacy
 - Improved perioperative assessment
 - · Shorten "learning curve"
 - Shorten Operative times
 - Reduced PPROM
 - Overall Maternal Fetal Outcomes

Cochrane Database of Systematic Review Conclusion

- · Further high-quality trials are need in this area
- FETO should only be offered within the framework of ongoing clinical trial.

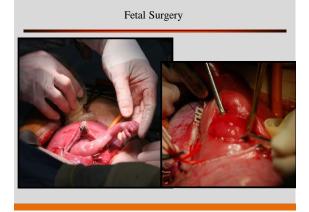
12

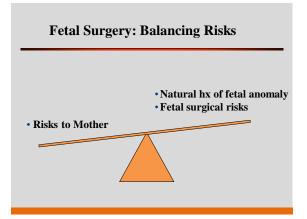
Fetal Surgery


Application of established surgical techniques to the unborn baby • During gestation • At end of gestation

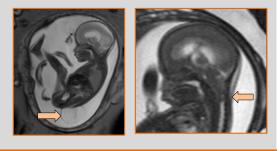
Fetal Surgery

To improve perinatal outcome for fetuses with malformations. • To prevent fetal death





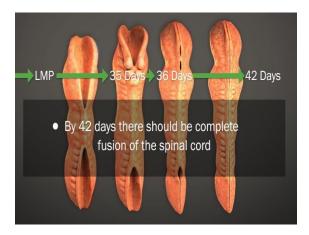
To prevent neonatal death or reduce long-term morbidity

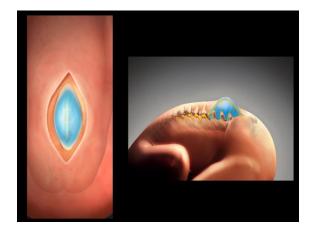

- Giant neck masses
- Congenital diaphragmatic hernia
 Congenital heart lesions
- Spina bifida*

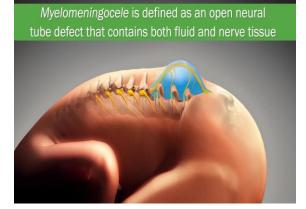
Meningomyelocele with Arnold Chiari Malformation

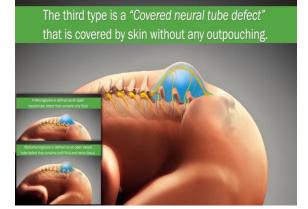
Rationale for In-utero Spina Bifida Repair Spina bifida 4,000 babies are born per year in the United States Hospital cost after birth: #1. Prevent leakage of CSF - Median \$29,000 (range:\$100-\$1,300,000) Cost of caring for a spina bifida: Û - \$636,000 per person for life Reverse Chiari II malformation - \$200 million per year Long-term morbidity associated with spina bifida - Unable to independently walk - Bowel and bladder control problems #2. Prevent damage to Hydrocephalus- shunt placement Mental retardation spinal cord - Sexual dysfunction ᠊ᡗ Preserve spinal cord function

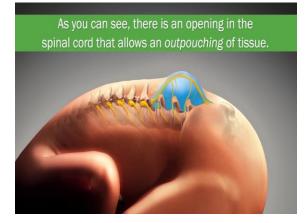
I.

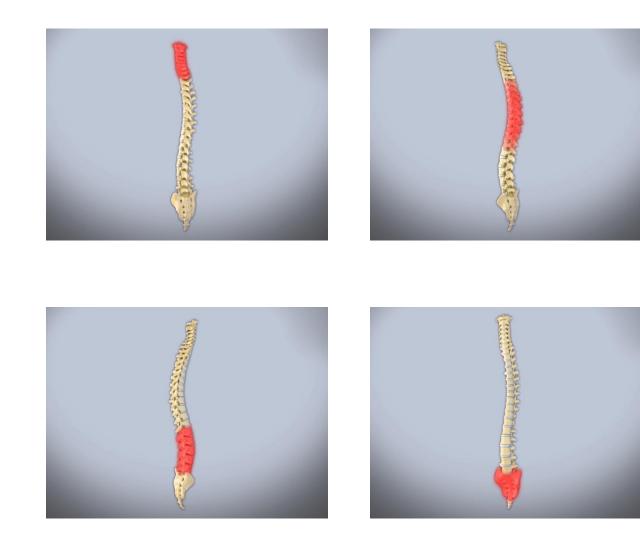

• Spina bifida is a congenital abnormality in which the normal fusion of the spinal cord fails to occur.



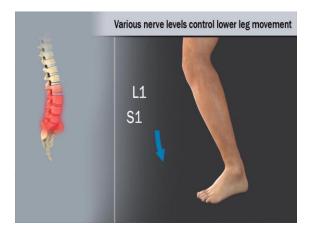


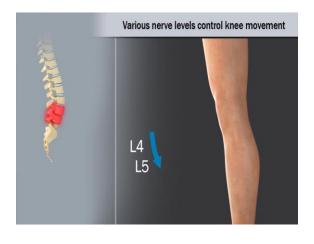


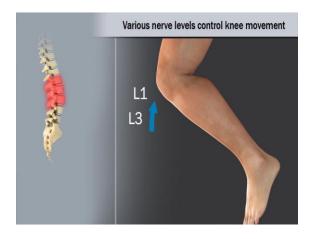

A Meningocele is defined as an open neural tube defect that contains only fluid.

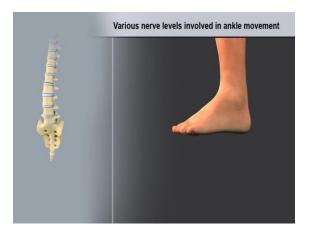


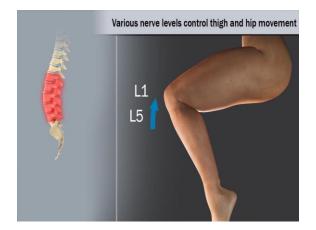
Spina bifida defects are open with any covering or outpouching, known as non-covered neural tube defects.

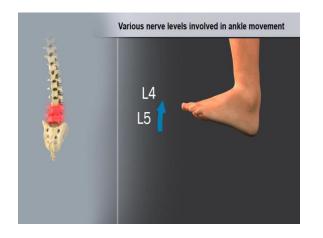


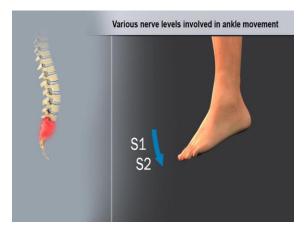









12/28/2017



surrounded by cerebal spinal fluid or CSF

When the CSF leaks and causes hydrocephalus a Chiari II malformation can occur.

The NEW ENGLAND JOURNAL of MEDICINE

MARCH 17, 2011

ESTABLISHED IN 1812

VOL. 364 NO. 11

A Randomized Trial of Prenatal versus Postnatal Repair of Myelomeningocele

N: Scott Adzick, M.D. Bizabeth A. Thom. Ph.D. Catherine Y. Spong, M.D. John W. Brock III. M.D. Smithael Barraya Arch. Res. P. physics. Web. cont. Intend: 6116. doi:10.1016/j. Barraya Mich. McCh. Academic Mich. and Arch. Res. Mich. Res. No. Res. Web. (Res. V. Statissies, K.M. and Michael, Cathering Mich., Mich. Res. No. Res. Web. (Res. V. Statissies, K.M. and Michael, Cathering Mich., Mich. Res. No. Res

Management of Myelomeningocele Study (MOMS Trial)

- · Fetal Surgery vs Routine Care
- NIH funded
- 3 Centers University of California, San Francisco Children's Hospital of Pennsylvania Vanderbilt Medical Center
- 8 years
- \$22.5 million

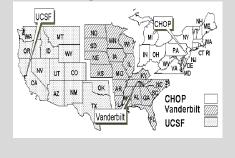
Goal

To compare the safety and efficacy of in utero repair of myelomeningocele with that of the standard postnatal repair

Study Design

- Unmasked randomized trial
- Fetal versus postnatal closure of myelomeningocele
- Sample size 200
- · Central preliminary screening and assignment to MOMS center
- · Central randomization
- · Outcome evaluation by blinded independent investigators

Inclusion Criteria


- · Myelomeningocele defect starting between T1-S1
- Evidence of hindbrain herniation
- Singleton pregnancy 19⁰ to 25⁶ weeks
- Normal karyotype
- · Resident of USA
- · At least 18 years old

Additional anomalies Exclusion Criteria Unable to comply with travel,

- HIV or Hepatitis B positive
- · If known to be Hepatitis C positive
- Increased risk for preterm delivery
 - short cervix (< 2.5 cm)
 - cerclage
 - · uterine anomaly
 - placenta previa
 - prior spontaneous preterm delivery

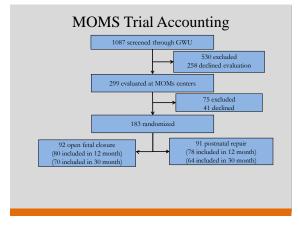
- need for support
- Psychosocial issues preventing compliance
- Fetal kyphosis ≥ 30 degrees
- Maternal IDDM
- Isoimmunization
- Body mass index ≥ 35
- · Other contraindications to
 - elective surgery

MOMS Center patient referral distribution

Evaluation at MOMS Center

- 2-day comprehensive evaluation
- Medical Evaluation
 - · History and physical
 - Ultrasound
 - Fetal MRI
 - · Fetal echocardiogram
 - Beck Depression Inventory
- Consultation with team
 - Fetal surgeon
 - Perinatologist
 - Neurosurgeon
 - Neonatologist
 - Anesthesiologist
 - Social worker
 - Ethicist
 - · Nurse coordinator

If Randomized to Prenatal Surgery


- Surgery 1-3 days after randomization
- · Before 26 weeks
- Standardized surgical technique
- Postoperative tocolytic therapy
- · Patient in local accommodation until delivery
- · Two weeks bedrest post-op
- · Weekly visits to MOMS center
- Delivery by C-section at 37 weeks

If Randomized to Postnatal Surgery

- · Patient returned home for prenatal care
- · Monthly ultrasounds by local physician
- Return to MOMS center at 37 weeks for fetal lung maturity testing
- Cesarean delivery if fetal lung maturity
- · Neonatal repair by MOMS neurosurgical team

MOMs Follow-up Exams

- Patient, support person and infant travel to MOMS center
- 12 and 30 months
- · Independent follow-up teams
 - Pediatrician
 - Psychologist
- Appointed by the Data Coordinating Center
 No affiliation with MOMS Center
- Blinded to treatment assignment

Primary Outcome at 12 months

- Death
- · Need for ventricular decompressive shunting
 - Need determined by independent neurosurgeons with defined by objective criteria
 - · Blinded to randomization

Infant Outcomes at 12 Months

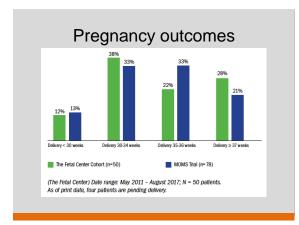
	Prenatal Surgery (n=78)	Postnatal Surgery (n=80)	RR (95% CI)	P value
Primary Outcome (%)	68	98	0.70(0.58-0.84)	< 0.001
Death	3	0		
Shunt criteria met	65	92		
Placement of shunt (%)	40	82	0.48(0.36-0.640	< 0.001
Any hindbrain herniation (%)	64	96	0.67(0.56-0.81)	< 0.001
None	36	4		
Mild	40	29		
Moderate	19	45		
Severe	6	22		

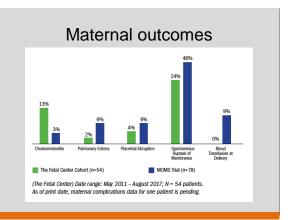
Secondary Outcome at 30 months

- BSID mental development index (MDI)
- Difference between the motor and lesion level
 - Lesion level determined radiographically
 - Functional level examination
 - Motosensory
 - Somatosensory

Infant Outcomes at 30 months

	Prenatal Sx N=64	Postnatal Sx N=70	P value
Primary outcome score	148.6 ± 57.6	122.6 ± 57.2	0.007
BMDI - MDI	89.7±14.0	87.3±18.4	0.53
Difference between anatomic level & functional level	0.58±1.94	-0.69±1.99	0.001
Difference (%)			
\geq 2 levels better	32	12	0.005
1 level better	11	9	
no difference	23	25	
1 level worse	21	25	
\geq 2 levels worse	13	28	0.03


Infant Outcomes at 30 Months


Pregnancy Complications

	Prenatal Surgery (N=78)	Postnatal Surgery (N=80)	Relative Risk	P Value
Chorioamniotic Separation (%)	26	0		< 0.001
Pulmonary Edema (%)	6	0		0.03
Oligohydramnios (%)	21	4	5.47(1.66-18.04)	0.001
Abruption (%)	6	0		0.03
SROM (%)	46	8	6.15(2.75-13.78)	< 0.001
Spontaneous Labour (%)	38	14		< 0.001
Transfusion at delivery (%)	9	1		0.03
Scar dehiscence at delivery (%)	10			

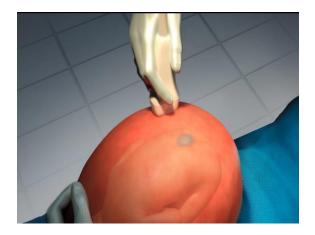
Outcomes

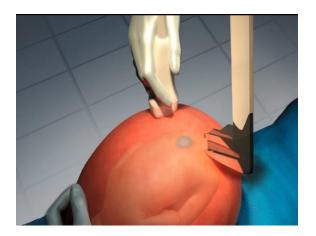
Fetal Surgery for Spina Bifida Repair – Summary					
	The Fetal Center Cohort (n=54)	MOMS Trial – Fetal Surgery (n=78)	MOMS Trial – Postnatal Surgery (n=80)		
Gestational Age at Surgery	25.02 ± .6	23.6 ± 1.4	n/a		
Gestational Age at Delivery	34.1 ± 3.5	34.1 ± 3.1	37.3 ± 1.1		
Perinatal/Neonatal Demise	3 (6%)	2 (3%)	2 (2%)		
VP Shunt at One Year	20/47 (43%)	31 (40%)	66 (82%)		

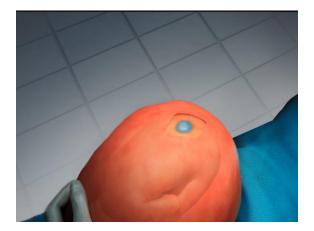
VP shunt outcomes

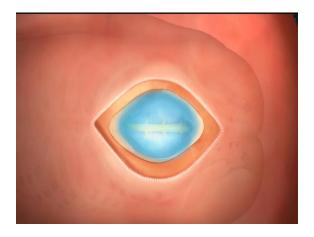
VP Shunt Rate				
	Fetal Center Cohort	MOMS Trial		
VP Shunt at One Year	20/47 (43%)	31/78 (40%)		

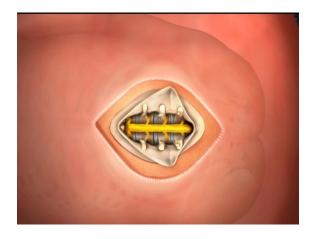
neonatal demises. As of print date, four patients are pending delivery.

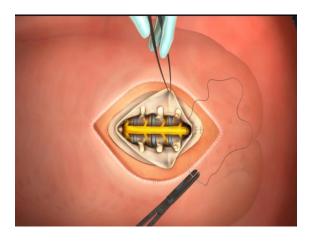

• During an 8 year period over 1,000 pregnant mothers were initially screened for the MOMs Trial.

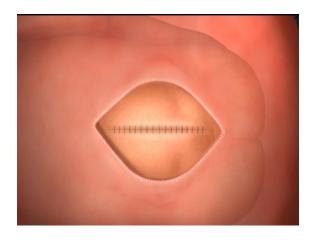












Committee on Obstetric Practice This document reflects emerging clinical and scientific advances as of the date insued and is subject to change. The information should not be construed as discuting an exclusive course of treatment or procedure to be followed.

Maternal–Fetal Surgery for Myelomeningocele

ABSTRACT: Myelomeningocele, the most severe form of spina bifds, occurs in approximately 1 in 1.500 brits in the United States. Features in whom myelomeningocele is dignosed typically are delevered at term and are treated in the ani nonotal period. A recent randomized controllect this found that feat surgers for myelo-meningocele improved a rumble of important outcomes, but also was associated with maternal and feat inits: Maternal-feat area in a single service of the service of the single service of the service of

Recommendation Women who meet the criteria outline in MOMs Trial should be made aware of the study findings and counseled regarding the option of maternal fetal surgery for fMMC including risks/benefits and implications to future pregnancies

Extended criteria

BMI Greater than 35

Pre-Pregnancy BMI may be greater than 35 kg/m2 but must be less than or equal to 40 kg/m2.

Structural Abnormality

Must be a <u>minor</u> abnormality that will not increase the risk of prematurity. Some examples include cleft lip & palate, a minor ventricular septal defect, pyelectasis, etc. A normal chromosomal microarray will also be required. This test can be done from the amniotic fluid taken during your amniocentesis.

Diabetes

Diabetic patients will require good glycemic control, for example a normal hemoglobin A1C at the start of pregnancy and compliance with insulin injections or pump therapy. A Previous Preterm Birth

If you have a history of a previous spontaneous singleton delivery (born before 37 weeks) followed by a full term delivery.

Torower by a function deavery. Maternal-Fettal RA Alloimmuization Must meet one of the following: 1. A low level of anti-red blood cell antibody that is not associated with fetal disease, specifically, anti-E < 1:4 or anti-M 2. Alloimmunization cases with a negative fetal red cell antigen status determined by anniocentesis.

Minimally invasive fetoscopic repair

Fetal Therapy: The Future

Ventricular size

Stem Cell Therapy

- Brain injury due to congenital heart defects
- Stem cell derived cardiac patches
- Genetic disorders

Future goals to repair

- · Water tight seal of the defect to prevent hind brain herniation
- · Reduce scarring and spinal cord tethering
- · Repair at an earlier gestational age
- · Minimally invasive spina bifida repair

Human case: HUC for in-utero repair of Spina Bifida at 23 weeks

Before Repair

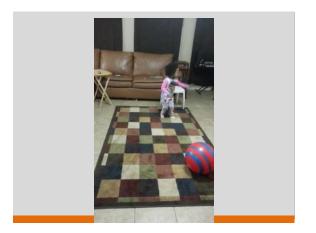
Skin defect after delivery (37 weeks)

Day #1

Day # 30

<image><image><image>

Spinal Cord and Clinical Outcomes



- Normal head size
- Normal both leg movements
- Normal bladder and bowel control

Minimal spinal cord scarring

<section-header><section-header>